Welcome to Applied Element Method.com

Fully nonlinear dynamic numerical analysis

Applied Element Method.com is dedicated to the educating engineers, scientists and researchers about the advancements inherent in AEM technology. The Applied Element Method, or AEM, is a new method of analysis, one that is capable of predicting the continuum and discrete behavior of structures to a greater degree of accuracy than current methods. With more than two decades of continuous research and development AEM has been proven to be the only method that can track structural collapse behavior passing through all stages of loading; elastic, crack initiation and propagation in tension-weak materials, reinforcement yielding, element separation, element collision (contact), and collision with the ground and adjacent structures.


Numerical Simulation of Polypropylene and Fiber Reinforced Polymer Composite Retrofitted Masonry Walls

In this study, an attempt is made to numerically simulate the behavior of Fiber Reinforced Polymer (FRP) and Polypropylene (PP) band composite using the Applied Element Method (AEM). Both of these materials have their own unique properties. FRP is used to increase the strength, whereas PP-band is used to increase the deformation capacity and energy dissipation capacity of masonry wall system.

read more

Seismic Assessment of Unreinforced Masonry Buildings in Canada

Unreinforced masonry (URM) structures have shown to be susceptible to significant damage during strong earthquakes. Vulnerability assessment of URM buildings is needed so that appropriate mitigation strategies can be implemented. The existing Canadian practice consists of rapid seismic screening of buildings to assign priorities for further and more refined assessments, followed by refined analysis of individual critical buildings.

read more