The Margherita Palace is a heritage masonry structure constructed two centuries ago in L’Aquila (Italy) and extensively damaged by the strong 2009 earthquake. The palace was considered unstable and therefore temporarily supported to avoid its collapse. A structural survey of the palace walls and floors was carried out using laser scanning. The laser scanning data was post-processed to create three dimensional model including the cracks and damage in the different structural elements. The paper discusses challenges dealing with both the laser scan data set and detected damage data to create a full 3-D Applied Element Model of the existing conditions of the building with cracking and material damage. The challenges include the removal of noise from the data, meshing challenges to create 3-D elements with acceptable aspect ratio and applying existing cracking and weakening to different components. Nonlinear dynamic analysis is performed for the damaged structure to check its partial or total collapse resistance if similar strong earthquake were to be applied to the structure, without the temporary supports, again. This analysis helps determining the weakest point of the structure which needs special retrofit attention.

Hadhoud, H., Fassieh, K., Gregory, A., Khalil, A., Harak, T. (2016). Seismic Assessment of the Damaged Margherita Palace, 16th World Congress on Earthquake Engineering (16WCEE). Key Words: Heritage Masonry Structure; Laser Sanning Survey; 3-D Applied Element Model; Nonlinear Dynamic Analysis.